一级标题
行内形式:我的博客 自动链接:我的博客地址https://swt-2020.github.io/
\[\overline{E} = \bigcap\limits_{F\in \mathcal{F},F\supset E} F\] ### optimization 这是斜体 或 这也是斜体 这是粗体 这是加粗斜体 这是删除线
siri
- 无序列表项1
- 无序列表项2
- 无序列表项3
表头1 | 表头2 | 表头3 | 表头4 |
---|---|---|---|
2 | 12 | 25 | 128 |
78 | 4456 | 85855 | 123 |
962 | 54566 | 788 | 258 |
一、上下标 \[ x^{y^z}=(1+{\rm e}^x)^{-2xy^w} \]
二、 括号 \[\langle x \rangle\] \[\lceil y \rceil\] \[\lfloor z \rfloor\] \[\lbrace w \rbrace\]
三、开方,省略号 \[f(x_1,x_2,\underbrace{\ldots}_{\rm ldots} ,x_n) = x_1^2 + x_2^2 + \underbrace{\cdots}_{\rm cdots} + x_n^2\] \[\sqrt[3]{2}\]
四、向量,内积,范数 \[\vec{a} \cdot \vec{b}=0\] \[\overleftarrow{xy} \quad and \quad \overleftrightarrow{xy} \quad and \quad \overrightarrow{xy}\] \[\lVert x \rVert\] \[\left< a,b \right>\]
五、积分、极限 \[\int_0^1 {x^2} \,{\rm d}x\] \[ \lim_{n \to +\infty} \frac{1}{n(n+1)} \quad and \quad \lim_{x\leftarrow{示例}} \frac{1}{n(n+1)} \]
六、累加、累乘 \[\sum_{i=1}^n \frac{1}{i^2} \quad and \quad \prod_{i=1}^n \frac{1}{i^2} \quad and \quad \bigcup_{i=1}^{2} R\]
七、大括号和行标 \[\Biggl(\biggl(\Bigl(\bigl((x)\bigr)\Bigr)\biggr)\Biggr)\]
\[ f\left( \left[ \frac{ 1+\left\{x,y\right\} }{ \left( \frac{x}{y}+\frac{y}{x} \right) \left(u+1\right) }+a \right]^{3/2} \right) \tag{行标} \]
八、表格 \[ \begin{array}{ccc|c} a11 & a12 & a13 & b1 \\ a21 & a22 & a23 & b2 \\ a31 & a32 & a33 & b3 \\ \end{array} \]
九、希腊字母
十、字体转换
十一、特殊符号
\(T(n) = \Theta(n)\), \(q \in R\) \(x_i^2\), \(e^{10}\), \((x)\), \([x]\), \(\{x\}\) \(\sum_1^{\infty}\), \(\int_1^\infty\) \(\frac{a}{b}\), \(\sqrt[4]{\frac{x}{y}}\) \(\mathcal{A}\)
行内公式: \(x_{mu}\), \(\sigma\), \(y=ax+b\), \(\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2 \cos^2 \theta\), \(M(\beta^{\ast}(D),D) \subseteq C\)
行间公式: \[ \sum_{i=0}^n i^2 = \frac{(n^2+n)(2n+1)}{6} \]
\[ x = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]
\[ f(n) = \begin{cases} n/2, & \text{if $n$ is even} \\ 3n+1, & \text{if $n$ is odd} \end{cases} \]
\[ \begin{equation} \begin{split} \frac{\partial^2 f}{\partial{x^2}} &= \frac{\partial(\Delta_x f(i,j))}{\partial x} = \frac{\partial(f(i+1,j)-f(i,j))}{\partial x} \\ &= \frac{\partial f(i+1,j)}{\partial x} - \frac{\partial f(i,j)}{\partial x} \\ &= f(i+2,j) -2f(f+1,j) + f(i,j) \end{split} \nonumber \end{equation} \]
\[ \begin{matrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \\ \end{matrix} \]
\[ \left( \begin{array}{c} s \\ t \end{array} \right) = \left( \begin{array}{cc} cos(b) & -sin(b) \\ sin(b) & cos(b) \end{array} \right) \left( \begin{array}{c} x \\ y \end{array} \right) \]
\[ \left[ \begin{array}{cc|c} 1&2&3\\ 4&5&6 \end{array} \right] \]
\[ \begin{equation} \sum_{i=0}^n F_i \cdot \phi (H, p_i) - \sum_{i=1}^n a_i \cdot ( \tilde{x_i}, \tilde{y_i}) + b_i \cdot ( \tilde{x_i}^2 , \tilde{y_i}^2 ) \tag{1.2.3} \end{equation} \]
\[ \beta^*(D) = \mathop{argmin} \limits_{\beta} \lambda {||\beta||}^2 + \sum_{i=1}^n max(0, 1 - y_i f_{\beta}(x_i)) \tag{我的公式3} \] 行内公式:$z = (p_0, ..... , p_n) $ 第一:$ s = r cos(a+b) = r cos(a) cos(b) - r sin(a) sin(b) $ $ t = r sin(a+b) = r sin(a) cos(b) - r cos(a) sin(b) $ \[ \begin{equation} \sum_{i=0}^n F_i \cdot \phi (H, p_i) - \sum_{i=1}^n a_i \cdot ( \tilde{x_i}, \tilde{y_i}) + b_i \cdot ( \tilde{x_i}^2 , \tilde{y_i}^2 ) \end{equation} \] \[ \begin{equation} \beta^*(D) = \mathop{argmin} \limits_{\beta} \lambda {||\beta||}^2 + \sum_{i=1}^n max(0, 1 - y_i f_{\beta}(x_i)) \end{equation} \] 下标:$ _{i=1} $